首先利用非对称的LINEX损失函数对双指数分布族刻度参数进行了经验贝叶斯估计,并讨论了该估计的性质,给出了收敛速度。
First, we obtain the empirical Bayesian estimator of the scale parameter for the double exponential distribution based on LINEX loss function and the convergence rate of the estimate.
本文讨论了在n维非对称的质量损失函数下,调整参数设计的可行性,求出了质量损失的最小解。
In the paper, Asymmetric quadric loss function is put forward under Normal assumption, adjustment parameter is defined, and its best value is calculated which minimizes the total quality lose.
说明了在非对称的二次损失函数下,也可以采用田口玄一减小质量损失的思想:先进行稳健性设计减小波动,再进行灵敏度设计减小偏差。
It's proved that using the above asymmetric loss function, Taguchi's ideas of parameter design still works: first reduce the variance, and then reduce the bias.
应用推荐