高斯过程隐变量模型是最近提出的比较流行的无监督降维方法。
Gaussian process latent variable model (GPLVM) is a popular manifold method recently proposed for dimensional reduction.
本文介绍隐变量上的箭头指向问题、模型的等价及检验的功效。
We introduce the direction of arrows on the latent variable, equivalent model and power of test.
首先以分阶段的诺西肽发酵过程非结构模型为基础,根据隐函数存在定理进行辅助变量的合理选择;
Firstly, based on the staged unstructured model of Nosiheptide fermentation process, secondary variables were selected according to the implicit function existence theorem.
应用推荐