在最大熵等统计机器学习模型当中,特征函数的选择可以说是对系统整体性能影响最大的部分。
The feature functions were reckoned as the most important part of the maximum entropy model which could affact the last result of system.
在许多盲信号源分离算法中,大多需要选择合适的非线性函数或者需要计算信号的高阶统计量。
In many algorithms for blind source separation, most of them must select nonlinear function or compute high-order statistical values.
应用推荐