在量子力学里,角动量算符(angular momentum operator)是一种算符,类比于经典的角动量。 在原子物理学涉及旋转对称性(rotational symmetry)的理论里,角动量算符占有中心的角色。角动量,动量,与能量是物体运动的三个基本特性。
本文利用无穷小旋转与角动量之间的关系来推导角动量算符的对易关系。
By using the relation between unlimited rotation and angular momentum, this article derives the commutation relation of angular momentum operators.
在量子力学中求解球对称辏力场中的薛定锷方程时,角动量算符的几个代表关系起着关键作用。
Then the formula for the scalar product of angular momentum operators is used to deduce the Schrodinger equation for one particle in spherical coordinate.
本文对球函数方程进行了求解,并将球函数方程的解合理地应用于角动量平方算符的本征值问题中。
The solution of spherical function is given in the paper, and it is applied reasonably in the problem of eigenvalue of angular momentum square operator.
应用推荐