In addition, this paper discusses the application of Web data mining in the self-service system, and presents the idea and method of association rule discovery algorithm and cluster discovery algorithm.
同时,对Web数据挖掘技术在自服务系统中的应用进行了探讨,提供了关联规则挖掘算法和聚类模式挖掘算法的实现思路和方法。
参考来源 - 个性化的校园网络自服务系统的研究与应用·2,447,543篇论文数据,部分数据来源于NoteExpress
本系统给出了基于关联规则挖掘和基于用户事务模式聚类两种推荐算法。
The system gives two kinds of recommendation algorithms based on association rule mining and user's transaction pattern clustering.
数据聚类在数据挖掘、模式识别、图像处理和数据压缩等领域有着广泛的应用。
Clustering is a promising application technique for many fields including data mining, pattern recognition, image processing, compression and other business applications.
聚类可以对数据进行有效分析,在数据挖掘、数值分析、模式识别等领域有着非常广泛的应用。
Clustering can analyse the data effectively, which has a wide use in many fields, such as data mining, numerical analysis and pattern recognition.
应用推荐