神经网络流量预测模型 multifractal FIR network ; MF-FIR
基于网络流量模型的异常检测是流量异常检测的一个重要研究方向。
Anomaly detection based on network traffic model is one of the important research directions in traffic anomaly detection.
接着对网络流量模型算法分析,简单介绍了泊松模型,马尔科夫模型,AR, MA, ARMA模型,重点分析了ARIMA模型算法。
Then algorithm analysis of network traffic model, a brief introduction of the Poisson model, Markov model, ar, MA, ARMA model, focused on analyzing ARIMA model algorithm.
实验结果表明,该模型对网络流量的短期预测是有效可行的,并具有良好的收敛性和稳定性。
The experimental results prove that the model is efficient in network traffic prediction with good astringency and stability.
应用推荐