结合贝叶斯网络和神经网络,提出了一种建立数据驱动型的动态线性回归系统模型的方法。
A new method was represented to model dynamic linear regression system driven by data, in which a bayesian network was combined with the RBF neural network.
基于相空间重构的非线性预报思想,建立一个时滞的BP神经网络模型,采用贝叶斯正则化方法提高BP网络的泛化能力。
Based on nonlinear prediction ideas of reconstructing phase space, this paper presents a time delay BP neural network model, whose generalization is improved utilizing Bayes' regularization.
应用推荐