本文研究局部预解式方法在算子理论中的应用。
In this paper, the applications of the local resolvent method in the operator theory are studied.
利用预解式算子技巧构造了一类求变分包含逼近解的迭代算法,并讨论了由此算法产生的迭代序列的收敛性。
A new iterative algorithms to approximate the solution of the class of nonlinear implicit quasi variational inclusions in Banach space is constructed using resolvent operator.
利用预解式算子技巧构造了一类求变分包含逼近解的迭代算法,并讨论了由此算法产生的迭代序列的收敛性。
Using the resolvent operator technique, we obtain the approximate solution to a system of set-valued quasi-variational inclusions.
应用推荐