在较低信噪比情况下,基于语音信号的短时相对自相关序列的短时平均幅度的端点检测能够获得较高的检测精度。
The endpoint detection based on short-time average magnitude of speech signals relative autocorrelation sequences can be detected in high accuracy under the low signal-to noise ratio.
本文详细分析了噪声对相对自相关序列MFCC(RAS-MFCC)特征的影响,并研究了高阶RAS-MFCC系数的抗噪声性能。
So the recognition rate can be improved in noise environments. We analyze the influence of noises to the RAS-MFCCs, and do research on noise robustness of the high-order RAS-MFCCs.
应用推荐