文章摘要信息 受限吸气式高超声速飞行器模型,研究了其鲁棒变增益控制问题。为处理飞行器模型中的建模误差和饱和非线性,将标准的线性变参数(linear parameter-varying, LPV)控制问题扩展到对时变参数、动态不确定性和饱和非线性具有结构摄动的鲁棒性框架内。基于对模型不确定性和饱
基于2个网页-相关网页
文章摘要信息 受限吸气式高超声速飞行器模型,研究了其鲁棒变增益控制问题。为处理飞行器模型中的建模误差和饱和非线性,将标准的线性变参数(linear parameter-varying, LPV)控制问题扩展到对时变参数、动态不确定性和饱和非线性具有结构摄动的鲁棒性框架内。基于对模型不确定性和饱
基于2个网页-相关网页
针对其存在非线性、参数时变和大延迟等难以控制的特性,提出基于T - S模糊模型的预测函数控制新方法。
As the nonlinearity, time-varying parameters and large lag make the control difficult, a predictive functional control method based on T-S (Takagi-Sugeno) fuzzy model is presented.
针对工业过程中普遍存在的时滞、非线性、对象参数时变等特性,提出了一种基于最优预测的神经元模糊自整定PID控制算法。
To the widely existed characteristics of time-delay, non-linear and timevarying of parameters in the industry process, an adaptive neuron-fuzzy PID controller based on optimal prediction is presented.
这种方法首先对非语言声音信号进行谐波分析,然后对所得到的时变振幅与频率等声音信号参数进行分段线性化。
This technique performs harmonic analysis of the nonspeech audio signals and then the resulted attributes including time-varying amplitude and frequency functions are piecewisely linearized.
应用推荐