... 低通(low pass) 247, 319, 320 低秩(low rank) 453 递推(recursive) 322, 348 高斯 320 滤波器发散(filter divergence) 378, 430 滤波参数(filtering parameter) 318 ㄍ (哥, ) G 高斯分布 74, 1115, 1125 独立性与不相关 491, 1120 特征函数1126 ...
基于12个网页-相关网页
对于有模型误差的惯导系统,采用常规卡尔曼滤波会导致较大的状态估计误差,甚至使滤波器发散。
For the inertial navigation system with model errors, there exists a large error in estimating a state using conventional Kalman filter, and it can even make the filter diverging.
仿真结果表明,两种方法结合,可以有效地防止滤波器发散,缩小实际的滤波误差,提高滤波精度,实现滤波器参数的在线改进。
Simulation result shows that the presented method reduces the error of actual filter, improves the accuracy and can amend filter's parameters on-line.
系统建模是卡尔曼滤波的基础,系统模型不准确带来的验前数据误差,使滤波器精度降低,可能造成发散。
System model is the foundation of Kalman filter. The nondeterminacy of system model brought on apriori data error, as the low precision and the diverge of the filter.
应用推荐