·2,447,543篇论文数据,部分数据来源于NoteExpress
提出了一种基于混沌相空间重构理论的优化近邻点局部线性化跳频预测方法。
Based on the theory of chaos phase space reconstruction, a local linear forecasting approach on selecting the optimal neighbor points is presented in this paper.
在混沌相空间重构局域法的基础上提出了几种新的预测方法,并将气象因子引入到了混沌预测中。
Then new load forecasting methods are developed based on the chaotic phase space reconstruction, in which climate factors are considered.
电力负荷的混沌预测是建立在重构电力负荷序列的相空间基础之上的。
The chaotic forecasting of power load is based on reconstructing phase space of the power load series.
应用推荐