波动具有巨大的能量。波动中水质点的运动产生动能,而波面相对平均水面的铅直位移则使其具有势能。
这表明粘弹性边界能更好地模拟波动能量从有限域从无限域的逸散,其结果更精确。
This shows that the viscoelastic boundary can better simulate the volatility of energy from a finite field from the infinite domain, dissipation, and the results are more accurate.
采用平滑WVD可消除交叉项的干扰,并将网络流量序列转换为二维空间的波动能量分布。
After adopting the smooth pseudo WVD that reduces the interference of the cross term, the series is transformed into a two-dimension distribution of fluctuation energy.
研究分析了水流的平均波高、波动能量、各波动要素随流程和随佛氏数的变化规律,以及波动沿频域的分布情况等等。
This article analyses the average height of wave, the energy of wave, and their changeable rules with Froude, distance and frequency.
应用推荐