课题主要研究有限群的正规性条件及其对于有限群结构的确定和有限群的共轭类的长度对群结构的影响。
The project under research mainly focus on the different conditions of normality and the permutation of groups and use the normality to determine the structure of finite groups.
为了在去正规化的条件下,保证数据跨多个实体的一致性,schema必须“在代码中定义,因为那是唯一能跟踪所有关系和保证数据正确性的地方。”
To keep data consistent across multiple entities in a denormalized context, schemas have to be “defined in code because it’s only code that can track all the relationships and maintain correctness.”
保留锥P为正规锥,将增算子A减弱为弱连续。空间E减弱为弱完备,在条件减弱的情况下,仍然得到了增算子不动点的存在性。
In this paper, we retains the cone P normal cone, increasing operator A weaken the weakly continuous operator, space E weaken the weak complete space.
应用推荐