由此推出了P -正则半群上的每个P -同余完全是由其包含幂等元的部分核正规系所决定的。
So We have prove that each P-congruence on P-regular semigroups is uniquely determined by its partial kernel normal systems containing idempotent elements.
研究中提出了新的基于正规基和正则基的比特串行模乘算法实现方案。
A new bit-serial modular multiplication based on optimal normal and shifted canonical was presented.
反之,S (p)的任一p -核正规系可以决定s (P)上的一个正则P -同余。
Conversely, any P-kernel normal system of s (P) can determine a regular P-congruence.
应用推荐