在原始规划可行集上引入了正则的概念,并在此正则条件下,研究了更一般的概率约束规划问题的稳定性。
The concept of regularity of feasible set is presented, under the regularity condition, the stability of more general probabilistic constrained programs problems is studied.
在一定的条件下,得到了概率约束规划逼近最优解集的稳定性和最优值的连续性,从而对近似求解这类问题提供了某种理论依据。
The stability of approximate optimal solutions sets and the continuity of optimal values of probabilistic constrained programs are obtained under some conditions.
随后我们提出了求解这类概率约束随机规划的一种近似算法,并在一定的条件下证明了算法的收敛性。
And then, we present an approximation method for solving this probabilistic constrained stochastic programming, and prove certain convergence of the method under some conditions.
应用推荐