本文对一类非线性抛物型方程提出对称修正有限体积元方法,给出能量模最优阶误差估计,并证明了对称修正有限体积元方法的解与一般有限体积元方法的解之差是一个更高阶项。
In this paper, we present a kind of symmetric modified finite volume element method for nonlinear parabolic problems, and give the optimal order energy norm error estimates for full discrete schemes.
采用有限元方法分析了颗粒增强铁基复合材料强度和应力与颗粒形状、尺寸以及体积分数的关系。
The finite element method is used to analyze the relationship between strength and stress of the particle reinforced iron matrix composites and the shapes, sizes and fraction volume of the particles.
与有限元方法相比,有限体积法保持物理量的局部守恒性质,并且计算更加简单。
Compared with finite element method, the finite volume method maintains the local conservation properties of physical quantities and has a simpler calculation.
应用推荐