考虑基于外心对偶剖分的椭圆型与抛物型方程的有限体积元法。
We considered the finite volume element methods (FVM) based on circumcenter dual subdivision for the elliptic equations and parabolic equations.
采用有限体积元法对计算区域进行迭代计算,并得到了流场的分布。
The calculation is performed by finite volume method, and fluid field distribution is obtained.
本文对一类非线性抛物型方程提出对称修正有限体积元方法,给出能量模最优阶误差估计,并证明了对称修正有限体积元方法的解与一般有限体积元方法的解之差是一个更高阶项。
In this paper, we present a kind of symmetric modified finite volume element method for nonlinear parabolic problems, and give the optimal order energy norm error estimates for full discrete schemes.
应用推荐