(通信与信息系统专业优秀论文)支持向量机在企业财务预警中的应用研究 - docin.com豆丁网 w'6)=;l’-《2 s,t. J,f(w‘_+6)一1≥O i=l’2,...,, (4—2) 上述最优分类线的推导过程可以自然扩展到多维情况下最优超平面(Optimal SeparatingHyperplane,OSH)的推导过程,这时H、H1、H2由分类线变为超平面。 超平面H1、H2上的点被称为支持向量(Suppo
基于4个网页-相关网页
...’2,...,, (4—2) 上述最优分类线的推导过程可以自然扩展到多维情况下最优超平面(Optimal SeparatingHyperplane,OSH)的推导过程,这时H、H1、H2由分类线变为超平面。
基于2个网页-相关网页
In this paper,linear and nonlinear SVMs are introduced based on the notion of optimal margin hyperplane,several popular training algorithms are presented,and some limitations and future research issues are also discussed.
该文首先引入最优超平面的概念,然后对线性SVMs和非线性SVMs进行介绍,给出一些常用的训练算法,并指出SVMs存在的局限和将来可能的研究内容。
参考来源 - 支持向量机研究·2,447,543篇论文数据,部分数据来源于NoteExpress
应用基于样本之间的紧密度确定每个样本的模糊隶属度,通过训练确定阀值,去除影响得到最优分类超平面的噪声和野点。
The fuzzy membership of each sample is defined by affinity among samples, and by the training determine a threshold, noises and outliers are removed, which influence optimal separating hyperplane.
前者寻求最大化两类间隔的最优分类超平面,后者用逻辑规则解释分类。
The former attempts to find an optimal hyperplane that maximize margin between two classes, and the later are designed to provide an explanation of the classification using logical rules.
最优分类超平面原理使SVM在解决线性可分问题时有很好的表现。
The principle of finding optimized decision boundary give SVM excellent performance on linear separatable problems.
应用推荐