无目标的,无指导的没有目标或目的的;无引导的。
采用基于依存分析改进贝叶斯网络的无指导的机器学习方法对汉语大规模真实文本进行词义消歧实验。
The Word Sense Disambiguation (WSD) study based on large scale real world corpus is performed using an unsupervised learning algorithm based on DGA improved Bayesian Model.
在无指导的情况下,将上述数据库的图像显示在还未受训的回旋网眼前,它能学习识别70%以上的分类。
When a ConvNet with unsupervised pre-training is shown the images from this database it can learn to recognise the categories more than 70% of the time.
应用推荐