根据大气阻力摄动的基本原理,给出两种摄动计算方法,即半分析半数伍方法和数值积分方法。
On the basis of the principle of atmospheric drag perturbation this paper describes two methods: numerical method and combining both of analytical and numerical method.
首先采用摄动法从理论上推导出时滞动力系统的分叉响应方程,再采用数值模拟的方法研究了时滞参数对系统分叉响应的影响。
Perturbation method is used to obtain the bifurcation equation with time-delays, and numerical method is utilized to analyze the effect of time-delays on the steady state response.
第三章通过数值法分析了各项轨道摄动和参数误差等因素的对轨道计算的影响,给出了精确的月球探测器轨道计算数学模型。
Chapter 3 analyzes numerically the effects for orbit calculation caused by orbital perturbation, parameter error and so on. A precise mathematical model of orbit calculation is given.
应用推荐