你甚至不必对这些时间序列数据进行分析,因为这个工具允许你做一个散点图来比较不同数据里的搜索趋势。
You don't even have to produce an analysis on time-series data, as the tool lets you do a scatter plot to compare search trends between different data.
当基因频率矩阵中存在稀有基因时,其对应分析的散点图则呈现明显的“蹄型效应”。
When some alleles have very low frequency in the gene frequency matrix, there would be "horse-shoe effect" in the Scallergram of correspondent analysis.
结果所得的数据通过模式识别法中的主成分分析(PCA),在得分散点图中实现了对不同种类的制剂的区分。
Results Analyzing the data with principal component analysis(PCA) by model recognition, the different agents can be distinguished in the scattered plots.
应用推荐