提出一种基于己知样本的快速聚类算法(FCABFS),该算法通过对己知样本训练获 得准确的初始聚类中心,运用对象分离的方法计算聚类中心和非相似度,算法不预设最 终需要的聚类数...
基于12个网页-相关网页
文介绍了一种聚类大型二元数据集合的快速算法,在该数据集合中数据点是高维的,并且大多数的坐标值为零。
This paper introduces a fast algorithm to cluster large binary data sets where data points have high dimensionality and most of their coordinates are zero.
在公开数据集和人工数据集上的实验结果表明,DP算法能快速高效地找到接近于真实聚类中心的数据点作为初始聚类中心。
Experiments on both public and real datasets show that DP is helpful to find cluster centers near to real centers quickly and effectively.
顺序聚类算法是一种非常直接和快速的算法,并且不需要提前确定聚类个数。
Sequential algorithm is a straightforward cluster algorithm, and people do not have to provide the number of clusters in advance.
应用推荐