本文提出了基于微分-积分方程组求解n - S方程的有限差分法求解不可压缩实际粘性流体绕孤立翼型流动。
A finite difference method based on differential-integral equation is presented for the solution of Navier-Stokes equations for incompressible viscous flow.
其物理意义,开普勒方程是关于行星运动微分方程组的一个积分,由于引入了辅助量E,使数学表达式大为简化。
It also has its physical significance. Kepler equation is an integral of differential equation set. The introduction of assistant quantity E leads to the simplification of mathematic expression.
研究一类非线性积分微分方程组边值问题。
Studies the boundary value problem for a class of nonlinear system of the integro differential equations.
应用推荐