采用基于基本解方法和径向基函数插值的无网格算法(MFS - RBF)分析了广义的热弹性问题。
The method of fundamental solutions (MFS) with radial basis functions (RBF) approximation was developed for general thermoelastic analysis.
介绍了径向基函数网络的函数逼近原理和方法,提出了一种基于广义回归神经网络(GRNN)的传感器非线性误差校正方法。
The RBF network function approximation theory and method are introduced, and the method of nonlinear error correction of sensor is presented based on generalized regression neural network(GRNN).
应用推荐