幂平均不等式:ai>0(1≤i≤n),且α>β,则有(∑ai^α/n)^1/α≥(∑ai^β/n)^1/β成立 iff a1=a2=a3=……=an 时取等号 加权的形式: 设ai>0,pi>0(1≤i≤n),且α>β,则有 (∑pi*ai^α/∑pi)^1/α≥(∑pi*ai^β/∑pi)^1/β if a1=a2=a3=……=an 时取等号。其证明只需用到数学分析里的琴生不等式(即上下凸性),取辅助函数F(X)=X^a
最后,我们应用所得结果给出加权幂平均不等式以及加权平均不等式的加细形式。
Finally, we provide an application of obtained result to the refinement of weighted power means inequality and weighted means inequality.
给出了幂平均不等式及其推广、二维加权幂平均不等式等的构成函数,并讨论了它们的单调性。
This paper discusses the generating functions of monotony for the Power-Mean Inequality, Binary dimension power mean inequality and Binary integral power mean inequality.
应用推荐