...;定点实时识别;倒谱系数;差分倒谱系数 [gap=1159]Key words:hidden Markov model; speaker recognition; cepstrum coefficients; derivative coefficients of cepstrum ...
基于1个网页-相关网页
·2,447,543篇论文数据,部分数据来源于NoteExpress
本文应用全极点模型,提取语音信号的线性预测系数,并推导出其倒谱系数,获得线性预测倒谱差分,用以描述说话人声道的动态变化。
In this paper, we use full pole model to obtain speech signal LPC, then deduce it's LPCC, and we use the LPCC difference to describe speaker's track dynamic movement.
通过应用全极点模型,提取语音信号的线性预测系数,并推导出其倒谱系数,获得线性预测倒谱差分,用以描述说话人声道的动态变化。
By using full pole model, we obtained speech signal LPC, then deduced it's LPCC, and we used the LPCC difference to describe speaker's track dynamic movement.
应用推荐