基于网格的多密度聚类算法不仅能够对数据集进行正确的聚类,同时还能有效的进行孤立点检测,有效的解决了传统多密度聚类算法中不能有效识别孤立点和噪声的缺陷。
GDD algorithm can not only clusters correctly but find outliers in the dataset, and it effectively solves the problem that traditional grid algorithms can cluster only or find outliers only.
同时,经典算法都单纯以距离或密度作为划分聚类的标准,因此存在很大的局限性。
Meanwhile classic algorithms take only distance or density as the norm applied in clustering, so it is unreasonable and undesirable.
提出了一种多密度网格聚类算法gdd。
This paper presents a grid - based clustering algorithm for multi - density (GDD).
应用推荐