无模型学习自适应控制 MFLAC
结果表明,相对于常规PD控制器,该神经网络控制器具有自学习、自适应功能,位置跟踪获得了满意的控制效果。
The simulation results prove that the neural network controller has self-learning and self-adaptive ability by comparison with PD controller. The position tracking control obtains satisfactory effect.
针对一类单输入单输出不确定非线性重复跟踪系统,提出一种基于完全未知高频反馈增益的自适应迭代学习控制。
An adaptive iterative learning control approach is proposed for a class of single input, single output uncertain nonlinear systems with completely unknown high frequency learning gain.
本文给出了利用自适应神经元学习、修改模糊控制规则的新方法。
This paper proposes a new method to learn fuzzy control rules using adaptive neural element.
应用推荐