针对工业过程中普遍存在的时滞、非线性、对象参数时变等特性,提出了一种基于最优预测的神经元模糊自整定PID控制算法。
To the widely existed characteristics of time-delay, non-linear and timevarying of parameters in the industry process, an adaptive neuron-fuzzy PID controller based on optimal prediction is presented.
针对其存在非线性、参数时变和大延迟等难以控制的特性,提出基于T - S模糊模型的预测函数控制新方法。
As the nonlinearity, time-varying parameters and large lag make the control difficult, a predictive functional control method based on T-S (Takagi-Sugeno) fuzzy model is presented.
本文提出了一种基于强跟踪滤波器的自适应故障预报方法,能够对一类带时变参数的非线性系统进行故障预报。
This paper presents an adaptive fault prediction method based on strong tracking filter, which can predict faults in a class of nonlinear time varying systems.
应用推荐