图像的局部特征尺度在进行特征提取和构造尺度不变量时非常重要。
Local characteristic scale of images plays an important role in feature extraction and local scale invariant construction.
针对遥感图像配准,基于尺度不变特征变换(SIFT)提出了一种在核空间中构建仿射不变描述子的方法。
A technique to construct an affine invariant descriptor for remote-sensing image registration based on the scale invariant features transform (SIFT) in a kernel space is proposed.
摘要 : 改进了传统的尺度不变特征变换(SIFT)算法,使其在进行图像匹配的同时,可以求取出物体的旋转角度。
Abstract : The Scale-invariant Feature Transform(SIFT) algorithm was improved in this paper, which could match two pictures and could also compute the object rotation angles in the pictures.
应用推荐