定义了区间I上的均匀可导函数,给出了区间i上函数均匀可导的两个充要条件。
The uniformly derivable function on the interval I is defined, and two sufficient and necessary conditions of uniformly derivable function are given.
文章针对被积函数是连续函数、可导函数的定积分不等式提出了几种有效的证明方法。
This article analyses how to prove the stable integral inequality effectively while knowing the function is continuous and derivative.
文章针对被积函数是连续函数、可导函数的定积分不等式提出了几种有效的证明方法。
This article was to offer the method about the complex function's differentiable and holomorphic.
Now Isaac Newton and/or Joseph Raphson figured out how to do this kind of thing for all differentiable functions.
既然牛顿和拉复生已经,指数了如何解这种可导函数,因此我们就不用太担心了。
应用推荐