3.1.2 分数阶微分(Fractional Differentiation)的简介 26-27 3.2 常用的分数阶微积分分析方法 27-35
基于16个网页-相关网页
求解分数阶微分系统的一种数值算法 关键词:分数阶微分;系数;数值算法 [gap=1098]Key words:fractional order differential;coefficient;numerical algorithm
基于6个网页-相关网页
In this paper, some basic theory for first order differential equations is generalized to the fractional differential equations.
在这篇论文中,我们把经典一阶微分方程的有关理论推广到分数阶微分方程的情形。
参考来源 - 分数阶微分方程的稳定性·2,447,543篇论文数据,部分数据来源于NoteExpress
同时,它还克服了直接用分数阶微分检测边缘时,有边缘漂移的问题。
At the same time, it overcomes the shift of the edge using fractional order differentiation directly.
通过分析系统不动点的稳定性,得到分数阶微分系统存在混沌的解析条件。
The analytical conditions that the fractional-order differential systems remain chaotic are obtained by analyzing the stability of the fixed points of the systems.
摘 要: 由于分数阶微分系统具有记忆功能,在其求解过程中计算量较大。
Absrtact: The calculation work of solving a fractional order differential system is huge since it relating to history.
应用推荐