表2-1:常见随机分布的Hurst参数估算 试验二:采用确知分形参数的分形高斯噪声(FGN)作为数据序列,这样所产 生的数据将会是严格自相似,拥有较为平稳的结构,我们定义其Hurst参数值范 围为0.50<H<0.95,每相差...
基于35个网页-相关网页
·2,447,543篇论文数据,部分数据来源于NoteExpress
分形高斯噪声fgn是分形布朗运动的增量过程,广泛应用于自相似过程的建模分析。
Fractional Gaussian Noise (FGN) is the increment process of fractional Brownian motion, they are widely used in modelling self-similar process.
提出了一种针对加性白高斯噪声(AWGN)的改进分形图像去噪方法。
An improved fractal image denoising algorithm for removing additive white Gaussian noise (AWGN) was presented by adopting quadratic gray-level function.
模拟实验结果表明,该方法不仅具有高的分辨率,而且能有效地抑制分形差分高斯噪声的影响。
It is demonstrated by simulations that the new approach has high resolution and can suppress the effect of fractionally differenced Gaussian noise.
应用推荐