新算法选择很广一类的隐层神经元函数,可以直接求得全局最小点,不存在BP算法的局部极小、收敛速度慢等问题。
The algorithm can get global minimum easily with a wide variety of functions of hidden neurons, and no problems such as local minima and slow rate of convergence are suffered like BP algorithm.
本文首先对箱子约束全局最优化问题提出了一个新的辅助函数,该函数能跳出当前的局部极小点。
In this paper, a new auxiliary function with one parameter on box constrained for escaping the current local minimizer of global optimization problem is proposed.
将混沌机制引入常规BP算法,利用混沌机制固有的全局游动,逃出权值优化过程中存在的局部极小点,解决了网络训练易陷入局部极小点的问题。
Chaotic mechanism is introduced to normal BP algorithm, and the problem of local limit value for network is solved using global moving characteristic of chaotic mechanism is weight optimization.
应用推荐