演化学习具有全局优化性能好,实验样本数要求少等优点,但也存在一些问题,如演化学习的速度较慢、模型的稳定性较差等。
But it has some disadvantages, for example:the rate of evolutional learning is too slow sometimes, and the stability of network is discontented.
数值实验结果表明,与量子粒子群优化算法相比,该算法效率高、优化性能好,具有较强的避免局部极小能力,对初值具有较强的鲁棒性。
Numerical simulation results show that, compared with QDPSO, it is effective, with strong ability to avoid being trapped in local minima and robust to initial value.
应用推荐