传统的基于线性变换的主成分分析法(PCA)是一种有效的地震属性降维优化方法。
Traditional principal analysis method (PCA) based on linear transform is effective method of seismic attribute dimension-reducing optimization.
基于核主成分分析(KPCA)的人脸识别算法能够提取非线性图像特征,在小样本训练条件下有较好性能。
The algorithm of face recognition based on kernel principal component analysis(KPCA)can abstract nonlinear features of image and can get better performance under less sample training conditions.
线性主成分分析是一种线性分析方法,而数据通常是非线性的。
Principal component analysis is a linear method, but the most data are nonlinear.
应用推荐