...为粒子的维数;m 为种群的规模;t 为当前的迭代步数;r1、r2分别为0 和1 之间的随机数;c1、c2为加速度常数( acceleration constant)。
基于20个网页-相关网页
我来把更一般的形式,写出来吧,在一维空间中,位置和速度,作为时间函数的,一般形式,这里的加速度是一个常数。
I now would like to write down, in most general form the equation for the position and the velocity as a function of time for a one-dimensional motion whereby the acceleration is constant.
上一课的方程我们,已经比较熟了,常数加速度的,一维运动方程。
We know the equations so well from our last lecture from one-dimensional motion with constant acceleration.
请注意此处的加速度,是一个常数,不随时间变化而变化,不过速度是变化的。
So notice that the acceleration is constant in time, is not changing but the velocity is changing.
A limited class of problems is one in which the acceleration is just a constant.
在这类有限的问题里,加速度均为常数
So you cannot use the formula once it hits the ground because once it hits the ground, the fundamental premise that a was a constant of -9.8 or -10 is wrong.
当物体落地以后,该公式就不适用了,因为当物体落地后,公式的基本前提——,加速度为常数-9.8或-10——就不成立了
take the derivative of this, get the velocity vector and you notice his magnitude is a constant Whichever way you do it, you can then rewrite this as v square over r.
对这个式子求一次导,就能得到速度矢量,你会发现其模长是常数,不管用什么方法,加速度也可以写成 v^2 / r
应用推荐