Peng和Xiong[10]发现投资者的注意力约束导致其分类学习(category learning)行为,即投资者更倾向处理市场层面信息而非公司特定信息。
基于12个网页-相关网页
The new neural network ensemble method includes two algorithms, one is producing algorithm of individual neural network based on classified-learning method, and the other one is individual neural network ensemble algorithm based on orthogonal transformation.
在这个神经网络集成技术中,本文提出了分类学习个体网络生成技术和基于正交变换的个体神经网络集成技术。
参考来源 - 基于神经网络集成的入侵检测研究The main results are elaborated as follows.1. When the category members had the same features across two near dimensions , the classification learning and the inference learning was advanced.2.
类别内的成员具有双维度匹配特征,或者在双维度分离特征位置上具有双维度相同特征关系时,对于分类学习和推理学习不能起到这种特定的促进作用。
参考来源 - 双维度特征关系和特征位置对类别学习的影响②The frequency of presentation affects the result of category learning by classification.
②高频特征的分类测验成绩要优于低频特征,即特征在分类学习过程中的出现频率会影响类别知识的形成。
参考来源 - 类别学习中的类别使用效应·2,447,543篇论文数据,部分数据来源于NoteExpress
数字识别再一次成为分类学习的常见样本。
Digit recognition, once again, is a common example of classification learning.
分类学习是机器学习重要的研究内容。
Classification Learning is the important content in Machine Learning.
如果通过算法作出的决定需要输入别的地方,这时分类学习是必要的。
Classification learning is often necessary when the decisions made by the algorithm will be required as input somewhere else.
应用推荐