并且将动量方程式中之 对流项 ( Convective terms ),利 用Second-order upwind scheme 求解,以增加数值计算上之稳定性。并提出各种 适当之计算边界条件,以符合波浪传递的现象。
基于12个网页-相关网页
The hyperbolic equations were formulated by artificial compressibility method with the convective terms discreted using a third-order upwind scheme based on Roe's approximate Riemann solver.
不可压粘性绕流的求解采用了人工压缩性方法,其中对流项的离散应用了三阶迎风格式。
The grid generation technique, difference scheme of convective and diffusive terms, pressure and velocity correction methods and arithmetic of nonlinear equations are determined.
确定了本文数值模拟所采用的网格的生成技术,对流扩散项的离散格式,压力修正与速度修正方法,以及非线性代数方程组的求解方法。
The integral N-S equation is regarded as a special diffusion equation and the pressure term, convective term are regarded as source terms.
将此N S方程看作一个特殊的扩散方程,将压力项与对流项看作是源项,得到一个积分方程。
应用推荐