均值不等式,又名平均值不等式、平均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。
用二元均值不等式的变形式给出两个分式不等式的推广及证明。
Two proofs based on two lemmas for average inequality was discussed in this paper.
本文研究了均值不等式在简化初等不等式证明及定积分等方面的一些应用。
Here some applications of average value inequality on the proof of inequality and integral are presented.
第二部分将通常的积分平均值不等式推广成一般形式,并利用它给出一些不等式的证明。
The part two general forms was derived with general integral average inequality and Some inequality was proved with this result was obtained above.
应用推荐