它进一步说明一个四元流形的截面曲率的估计对许多对称黎曼空间都是有效的。
It proves that the estimate sectional curvature of a quaternion manifold is very useful for Riemann symmetric space.
利用黎曼对称空间同正交对称李代数之间的密切关系及一个矩阵不等式给出了一个复流形上截面曲率的上界的精确估计。
We used the relationship of the Riemann symmetric space and the symmetric algebra, a matrix inequality to provided a estimate sectional curvature of a complex manifold.
本文研究了伪黎曼空间型中具有常平均曲率的类空子流形,得到了这类空子流形的一个积分不等式及刚性定理。
This paper discusses the space-like submanifolds with constant mean curvature in a pseudo-Riemannian space form, and obtain an integrate inequality and a rigidity theorem.
应用推荐