F=α(?) (s) (s=β/α) is a square Randers metric, whereα:=(a_(ij)y~iy~j)/(1/2) is a Riemannian metric andβ:=b_iy~i is a closed 1-form.
定理5.2(M,F)是(n≥3)维的Finsler空间,F=((α+β)~2)/α是平方Randers度量,其中α:=(a_(ij)y~iy~j)/(1/2)是黎曼度量,β:=b_iy~i是闭的1形式,s=β/α。
参考来源 - 局部对偶平坦的Finsler度量In the end, the problem of robot trajectory planning is investigated by the linearization method and Riemannian metric.
最后,应用近似化方法和黎曼度量方法,研究了机器人最优轨迹规划的问题。
参考来源 - 机器人操作性能的微分流形理论与方法研究·2,447,543篇论文数据,部分数据来源于NoteExpress
本文提出一种基于黎曼度量的训练样本类不平衡问题的分类方法。
A method based on Riemannian metric to the classification problem with imbalanced training data was proposed.
最后,应用近似化方法和黎曼度量方法,研究了机器人最优轨迹规划的问题。
In the end, the problem of robot trajectory planning is investigated by the linearization method and Riemannian metric.
应用推荐