在他们的新论文中,研究者指出:他们给系统添加越来越多的物体的识别能力时,单个物体的平均部件数量随之越来越少。
In their new paper, the researchers show that, as they add the ability to recognize more objects to their system, the average number of parts per object steadily declines.
传统的物像识别系统在辨别数字图形中的一个特定物体时,通常是从寻找该物体的显著部件开始的。
A conventional object recognition system, when trying to discern a particular type of object in a digital image, will generally begin by looking for the object's salient features.
在默认的规则集中,可以通过使用字典分类令牌来识别部件类型。
In the default rule set, a part type is identified by classifying the token using a dictionary.
应用推荐