贝叶斯学习是利用参数的先验分布,由样本信息求来的后验分布,直接求出总体分布。贝叶斯学习理论使用概率去表示所有形式的不确定性,通过概率规则来实现学习和推理过程。
...t协商;不妥协度;贝叶斯学习;在线学习 [gap=802]Key words: multi-agent negotiation;un-compromising degree;Bayes learning;online learning ...
基于44个网页-相关网页
Based on a rank-1 update, we propose Sparse Bayesian Learning Algorithm (SBLA), which has low complexity and high sparseness, thus being very suitable for large-scale problems.
基于秩-1更新,提出了稀疏贝叶斯学习算法(SBLA)。 该算法具有较低的计算复杂度和较高的稀疏性,从而适合于求解大规模问题。
参考来源 - 三种有效的核机器Negotiation strategies based on un-compromising degree is presented on the basis of Bayes learning and in time-limited multi-issues among multi-Agents.
,为了当协商进入僵持状态时参与协商的买卖双方能确定是否进行妥协,从而使协商继续进行下去,本文在限时条件下的多议题协商中和贝叶斯学习的基础上提出了基于不妥协度的协商策略。
参考来源 - 基于不妥协度的Bayes学习协商机制—《电脑知识与技术·学术交流》—2008年第27期—龙源期刊网Chapter four is "Static and Dynamic Bayesian Learning".
第四章是探讨静态信息和动态信息的贝叶斯学习。
参考来源 - 资产误定价问题的理论研究和实证分析·2,447,543篇论文数据,部分数据来源于NoteExpress
新算法是以相容的贝叶斯学习的渐进正态性为理论基础。
The new algorithm is based in the property of tendency and normal distribution of consistent Bayesian learning.
我们将稀疏贝叶斯学习与序列蒙特卡罗盲均衡算法结合,提高了原算法的性能。
We integrate the Sparse Bayesian Learning algorithm into the SMC blind receiver to improve the performance under sparse channels.
贝叶斯学习是一种基于已知的概率分布和观察到的数据进行推理,做出最优决策的概率手段。
Bayesian learning is a probability method that makes optimal decision based on known probability distribution and recently observed data.
应用推荐