诣零理想亦称诣零子环,比幂零理想更广的一类理想,它是描述克德(Kothe,G.)根的基础,环R中元a,若有正整数n使aⁿ=0,则称a为幂零元。适合aⁿ=0的最小正整数称为a的幂零指数,零元的幂零指数为1,若A是环R的理想(或子环),A中任一元皆为幂零元,则称A为R的诣零理想,若R中每个元是幂零元,则R称为诣零环。谢邦杰于1955年证明:左、右零化子各满足极大条件的环的诣零子环是幂零的。八年后,林文茨基(Levitzki,N.)、赫尔司亭(Herstein,I.N.)也相继证明这一结论。
为右群强半格的诣零理想扩张。
S is a nil-extension of strong semilattice of right semigroup.
的任意有限多个诣零左理想之和仍为A的诣零左理想;
Sum of any finitely many nil left ideals of A is also a nil left ideal of A.
给出满足主右理想极小条件诣零环的两个充要条件,此类环是扩张闭的。
This peper gives two necessary and sufficient conditions for a ring to be a nil MHR-ring. It is obtained that any nil MHR-ring is extension closed.
应用推荐