简单来讲,线性微分方程是指关于未知函数及其各阶导数都是一次方,否则称其为非线性微分方程。
线性微分方程的解 residue
齐次线性微分方程 homogeneous linear differential equation
线性微分方程系 linear system of differential equations
伴随线性微分方程 [数] adjoint linear differential equation
非齐线性微分方程式 non-homogeneous linear differential equation
一阶线性微分方程 [数] linear first-order differential equation
非线性微分方程 non-linear differential equation
常系数线性微分方程 General Differential equation
一阶线性微分方程式 First-Order Linear Differential Equations
绝大多数非线性微分方程是不能用解析方法求解的。
The overwhelming majority of nonlinear differential equations are not soluble analytically.
借助于变量代换,求解几类线性微分方程,并得到了几个求解的充分必要条件。
With variable substitution, several kinds of linear differential equations are solved and several sufficient and necessary conditions are obtained.
本文试应用求解一阶线性微分方程的方法导出几类常见的函数项级数的求和公式。
The sum formulas of several kinds of ordinary series with function term are deduced by using the method of solving linear differential equation.
应用推荐