短周期摄动(short period perturbation)是指周期摄动中周期等于或短于轨道周期的部分。
用数值积分来计算长周期和长期摄动,而用经典分析解的表达式来计算短周期摄动,这是很有效的。
It is efficient to compute long-period and secular perturbations by numerical integration, but the classical analytic solution may be used to calculate the short-period perturbations.
对所得仿真数据利用求和取平均的方法去除摄动力产生的短周期效应,通过分析去短周期项后的数据揭示出逆行地球同步轨道的演变特点。
Numerical solutions are periodically summed and averaged to get rid of short-periodic-term effects. By analyzing polished data, its orbit characteristics are revealed to us.
应用推荐