多元统计分析的主成份分析方法是对多维矢量数据提取主要特征分量,以此达到压缩矢量维数的目的。
The principal component analysis in multivariate statistic analysis is a method of compressing the dimension of vector data by extracting principal typical components from sample data set.
论述了从地形图中提取等高线、对等高线矢量化以及通过矢量数据生成高程数据的实现方法。
In this paper, the methods of drawing contour line from terrain map, the vector of contour line and generating elevation data from vector data are discussed.
所以,对光谱数据进行特征提取、实现数据压缩是非常必要的,即将一个大光谱数据集表示为几个特征矢量的线性组合。
It is very necessary to extract spectrum feature and compress spectral data, that is, a large spectrum dataset can be represented by the linear combination of some eigenvectors.
应用推荐