对于自变量t(标量)的每一个数值都有变动矢量a的确定量(长度与方向都确定的一个矢量)和它对应,则变(矢)量a称为变量t的矢函数,记作 a=f(t) 矢函数也可表为 a=axi+ayj+azk 式中 ax=fx(t),ay=fy(t),az=fz(t) 为三个标函数. 若把变动矢量表成点M的矢径形式 r=r(t) 则当t变动时,点M在空间中描出一条曲线,称为矢函数的矢端曲线.它的坐标由三个等式给定: r =xi+yj+zk x=x(t),y=y(t),z=z(t)
在两维图上画三维空间的矢函数图形是件难事。
It is hard to draw in two dimensions a picture of a vector function in three-dimensional space.
利用积分方程方法以及半空间并矢格林函数的快速算法对埋地目标体矢量电磁散射进行正演计算。
Forward electromagnetic scattering by buried objects is computed with the integral equation method and efficient algorithm for half-space dyadic Green's functions.
用散射、叠加方法推导出两层大地的并矢格林函数。
The dyadic Green's functions of two-layered earth are derived by the method of scattered superposition.
应用推荐